Integration, Fundamental Theorem of Calculus

December 2, 2016

Problems

Problem 1. Find the following.

1.
$$\int_0^{2\pi} \cos(x) dx$$

2. The **unsigned** area bounded by $\cos(x)$ between 0 and 2π .

3.
$$\int \frac{1}{x^2} \sin\left(\frac{1}{x}\right) dx$$

4.
$$\int_{-1}^{1} t^3 (1+t^4)^3 dt$$

5.
$$\int_0^{\pi/4} \tan x dx$$

Problem 2. Below is the graph of a function f.

Let
$$g(x) = \int_0^x f(t)dt$$
. Find $g(0), g'(0)$ and $g'(2)$.

For 0 < x < 2 the function g(x) is

- 1. increasing and concave up;
- 2. increasing and concave down;
- 3. decreasing and concave up;
- 4. decreasing and concave down.

Problem 3. Find the area of the propeller-shaped region enclosed by the curves $x - y^{1/3} = 0$ and $x - y^{1/5} = 0$.

Problem 4. Let $f(x) = \int_{x^2}^{x^3} (t^2 - t)^2 dt$. Find f'(x).

Problem 5. A rocket lifts o the surface of Earth with a constant acceleration of 20 m/sec^2 . How fast will the rocket be going 1 minute later?

Problem 6. Compute the integral $\int \sqrt{1-x^2} dx$. (Hint: $u = \arcsin x \ \text{means } x = \sin u$.) Use it to compute $\int_{-1}^{1} \sqrt{1-x^2} dx$. Does the result match what you would expect from the usual geometric considerations?

Problem 7. Using definite integrals, find the limit of the following sum:

$$\lim_{n \to \infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n} \right)$$

(Hint: $\frac{1}{n+i} = \frac{1}{n} \cdot \frac{1}{1+\frac{i}{n}}$)

Problem 8. Using **Riemann sums**, find the formula for computing the volume of a cone of height h and radius r. You can use the formula for the volume of a cylinder.

